This LLM did it in (checks notes):
> Over nearly 2,000 Claude Code sessions and $20,000 in API costs
It may build, but does it boot (was also a significant and distinct next milestone)? (Also, will it blend?). Looks like yes!
> The 100,000-line compiler can build a bootable Linux 6.9 on x86, ARM, and RISC-V.
The next milestone is:
Is the generated code correct? The jury is still out on that one for production compilers. And then you have performance of generated code.
> The generated code is not very efficient. Even with all optimizations enabled, it outputs less efficient code than GCC with all optimizations disabled.
Still a really cool project!
Does it really boot...?
They don't need 16b x86 support for the RISCV or ARM ports, so yes, but depends on what 'it' we're talking about here.
Also, FWIW, GCC doesn't directly assemble to machine code either; it shells out to GAS (GNU Assembler). This blog post calls it "GCC assembler and linker" but to be more precise the author should edit this to "GNU binutils assembler and linker." Even then GNU binutils contains two linkers (BFD and GOLD), or did they excise GOLD already (IIRC, there was some discussion a few years ago about it)?
I don't agree that all the claims are backed up by their own comments, which means that there's probably other places where it falls down.
Its... Misrepresentation.
Like Chicken is a Scheme compiler. But they're very up front that it depends on a C compiler.
Here, they wrote a C compiler that is at least sometimes reliant on having a different C compiler around. So is the project at 50%? 75%?
Even if its 99%, thats not the same story as they tried to write. And if they wrote that tale instead, it would be more impressive, rather than "There's some holes. How many?"
They can also be made to be deterministic. Some extra care is required to avoid computation paths that lead to numerical differences on different machines, but this can be accomplished reliably with small models that use integer math and use kernels that follow a specific order of operations. You get a lot more freedom to do these things on the small, application-specific models than you do when you're trying to run a big LLM across different GPU implementations in floating point.
EDIT (since HN is preventing me from responding):
> Some people care more about compiler speed than the correctness?
Yeah, I think plenty of people writing code in languages that have concepts like Undefined Behavior technically don't really care as much about correctness as they may claim otherwise, as it's pretty hard to write large volumes of code without indirectly relying on UB somewhere. What is correct in such case was left up to interpretation of the implementer by ISO WG14.
Fixing some UB in the kernel sources, lots of plumbing to the build system (particularly making it more hermetic).
Getting the rest of the LLVM binutils substitutes to work in place of GNU binutils was also challenging. Rewriting a fair amount of 32b ARM assembler to be "unified syntax" in the kernel. Linker bugs are hard to debug. Kernel boot failures are hard to debug (thank god for QEMU+gdb protocol). Lots of people worked on many different parts here, not just me.
https://github.com/ClangBuiltLinux/linux/issues for a good historical perspective. https://github.com/ClangBuiltLinux/linux/wiki/Talks,-Present... for talks on the subject. Keynoting LLVM conf was a personal highlight (https://www.youtube.com/watch?v=6l4DtR5exwo).
I had hoped one day to re-implement parts of LLVM itself in Rust; in particular, I've been various curious if we can concurrently compile C (and parse C in parallel, or lazily) that haven't been explored in LLVM, and I think might be safer to do in Rust. I don't know enough about grammers to know if it's technically impossible, but a healthy dose of ignorance can sometimes lead to breakthroughs.
LLVM is pretty well designed for test. I was able to implement a lexer for C in Rust that could lex the Linux kernel, and use clang to cross check my implementation (I would compare my interpretation of the token stream against clang's). Just having a standard module system makes having reusable pieces seems like perhaps a better way to compose a toolchain, but maybe folks with more experience with rustc have scars to disagree?
> This was a clean-room implementation (Claude did not have internet access at any point during its development); it depends only on the Rust standard library. The 100,000-line compiler can build Linux 6.9 on x86, ARM, and RISC-V. It can also compile QEMU, FFmpeg, SQlite, postgres, redis
> I started by drafting what I wanted: a from-scratch optimizing compiler with no dependencies, GCC-compatible, able to compile the Linux kernel, and designed to support multiple backends. While I specified some aspects of the design (e.g., that it should have an SSA IR to enable multiple optimization passes) I did not go into any detail on how to do so.
> Previous Opus 4 models were barely capable of producing a functional compiler. Opus 4.5 was the first to cross a threshold that allowed it to produce a functional compiler which could pass large test suites, but it was still incapable of compiling any real large projects.
And the very open points about limitations (and hacks, as cc loves hacks):
> It lacks the 16-bit x86 compiler that is necessary to boot [...] Opus was unable to implement a 16-bit x86 code generator needed to boot into 16-bit real mode. While the compiler can output correct 16-bit x86 via the 66/67 opcode prefixes, the resulting compiled output is over 60kb, far exceeding the 32k code limit enforced by Linux. Instead, Claude simply cheats here and calls out to GCC for this phase
> It does not have its own assembler and linker;
> Even with all optimizations enabled, it outputs less efficient code than GCC with all optimizations disabled.
Ending with a very down to earth take:
> The resulting compiler has nearly reached the limits of Opus’s abilities. I tried (hard!) to fix several of the above limitations but wasn’t fully successful. New features and bugfixes frequently broke existing functionality.
All in all, I'd say it's a cool little experiment, impressive even with the limitations, and a good test-case as the author says "The resulting compiler has nearly reached the limits of Opus’s abilities". Yeah, that's fair, but still highly imrpessive IMO.
This is really pushing it, considering it’s trained on… internet, with all available c compilers. The work is already impressive enough, no need for such misleading statements.
It's not a clean-room implementation because of this:
> The fix was to use GCC as an online known-good compiler oracle to compare against
I agree that having a reference compiler available is a huge caveat though. Their developing against a programmatic checker for a spec that's already had millions of man hours put into it. This is an optimal scenario for agentic coding, but the vast majorty of problems that people are going to want to tackle with agentic coding are not going to look like that
It is a research topic for heaven's sake:
https://arxiv.org/pdf/2601.02671
> For Claude 3.7 Sonnet, we were able to extract four whole books near-verbatim, including two books under copyright in the U.S.: Harry Potter and the Sorcerer’s Stone and 1984 (Section 4).
They used a lot of different techniques to prompt with actual text from the book, then asked the LLM to continue the sentences. I only skimmed the paper but it looks like there was a lot of iteration and repetitive trials. If the LLM successfully guessed words that followed their seed, they counted that as "extraction". They had to put in a lot of the actual text to get any words back out, though. The LLM was following the style and clues in the text.
You can't literally get an LLM to give you books verbatim. These techniques always involve a lot of prompting and continuation games.
The lesson here is that the Internet compresses pretty well.
A frontier model (e.g. latest Gemini, Gpt) is likely several-to-many times larger than 500GB. Even Deepseek v3 was around 700GB.
But your overall point still stands, regardless.
Citing a random arXiv paper from 2025 doesn't mean "they" used this technique. It was someone's paper that they uploaded to arXiv, which anyone can do.
The distinction may not have mattered for copyright laws if things had gone down differently, but the gap between "blurry JPEG of the internet" and "learned stuff" is more obviously important when it comes to e.g. "can it make a working compiler?"
It is enough to have read even parts of a work for something to be considered a derivative.
I would also argue that language models who need gargantuan amounts of training material in order to work by definition can only output derivative works.
It does not help that certain people in this thread (not you) edit their comments to backpedal and make the followup comments look illogical, but that is in line with their sleazy post-LLM behavior.
For IP rights, I'll buy that. Not as important when the question is capabilities.
> I would also argue that language models who need gargantuan amounts of training material in order to work by definition can only output derivative works.
For similar reasons, I'm not going to argue against anyone saying that all machine learning today, doesn't count as "intelligent":
It is perfectly reasonable to define "intelligence" to be the inverse of how many examples are needed.
ML partially makes up for being (by this definition) thick as an algal bloom, by being stupid so fast it actually can read the whole internet.
Because it _has_ been enough, that if you can recall things, that your implementation ends up not being "clean room", and trashed by the lawyers who get involved.
I mean... It's in the name.
> The term implies that the design team works in an environment that is "clean" or demonstrably uncontaminated by any knowledge of the proprietary techniques used by the competitor.
If it can recall... Then it is not a clean room implementation. Fin.
https://arxiv.org/pdf/2601.02671
> For Claude 3.7 Sonnet, we were able to extract four whole books near-verbatim, including two books under copyright in the U.S.: Harry Potter and the Sorcerer’s Stone and 1984 (Section 4).
Edit: actually, no, I take that back, that's just very similar to some other research I was familiar with.
Not from me you haven't!
> "they've hit a wall, no more data, running out of data, plateau this, saturated that"
Everyone thought Moore's Law was infallible too, right until they hit that bend. What hubris to think these AI models are different!
But you've probably been hearing that for 3 years too (though not from me).
> Models keep on getting better, at more broad tasks, and more useful by the month.
If you say so, I'll take your word for it.
Since then, all improvements came at a tradeoff, and there was a definite flattening of progress.
Idk, that sounds remarkably similar to these AI models to me.
I dunno. To me it doesn’t even look exponential any more. We are at most on the straight part of the incline.
So where is that?
Prove this statement wrong.
Your post is phrased like it's a two sentence slam-dunk refutation of Anthropic's claims. I don't think it is, and I'm not even clear on what you're claiming precisely except that LLMs use knowledge acquired during training, which we all agree on here.
If all it takes is "trained on the Internet" and "decompress stored knowledge", then surely gpt3, 3.5, 4, 4.1, 4o, o1, o3, o4, 5, 5.1, 5.x should have been able to do it, right? Claude 2, 3, 4, 4.1, 4.5? Surely.
But reimplementing that isn't impressive, because its not a clean room implementation if you trained on that data, to make the model that regurgitates the effort.
Take the C4 training dataset for example. The uncompressed, uncleaned, size of the dataset is ~6TB, and contains an exhaustive English language scrape of the public internet from 2019. The cleaned (still uncompressed) dataset is significantly less than 1TB.
I could go on, but, I think it's already pretty obvious that 1TB is more than enough storage to represent a significant portion of the internet.
That seems implausible.
If you're testing a model I think it's reasonable that "clean room" have an exception for the model itself. They kept it offline and gave it a sandbox to avoid letting it find the answers for itself.
Yes the compression and storage happened during the training. Before it still didn't work; now it does much better.
If it could translate the C++ standard INTO an extensive test suite that actually captures most corner cases, and doesn't generate false positives - again, without internet access and without using gcc as an oracle, etc?
Except its trained on all source out there, so I assume on GCC and clang. I wonder how similar the code is to either.
Why is this even desirable? I want my LLM to take into account everything there is out there and give me the best possible output.
My second reaction: still incredible, but noting that a C compiler is one of the most rigorously specified pieces of software out there. The spec is precise, the expected behavior is well-defined, and test cases are unambiguous.
I'm curious how well this translates to the kind of work most of us do day-to-day where requirements are fuzzy, many edge cases are discovered on the go, and what we want to build is a moving target.
/me Laughs in "unspecified behavior."
Unspecified is whatever you want it to mean. I am also laughing, having never heard "unspecified" before.
$ ./target/release/ccc-arm -I /usr/include/ -I /usr/local/include/ -I /usr/lib/gcc/aarch64-redhat-linux/15/include/ -o hello hello.c
$ ./hello
Hello from CCC!But yeah, either way it just needs to know where to find the stdlib.
This is incredible!
But it also speaks to the limitations of these systems: while these agentic systems can do amazing things when automatically-evaluable, robust test suites exist... you hit diminishing returns when you, as a human orchestrator of agentic systems, are making business decisions as fast as the AI can bring them to your attention. And that assumes the AI isn't just making business assumptions with the same lack of context, compounded with motivation to seem self-reliant, that a non-goal-aligned human contractor would have.
As a particular near-term step, I imagine that it won't be long before we see a SaaS company using an AI product manager, which can spawn agents to directly interview users as they utilize the app, independently propose and (after getting approval) run small product experiments, and come up with validated recommendations for changing the product roadmap. I still remember Tay, and wouldn't give something like that the keys to the kingdom any time soon, but as long as there's a human decision maker at the end, I think that the tech is already here.
“Typically, a clean-room design is done by having someone examine the system to be reimplemented and having this person write a specification. This specification is then reviewed by a lawyer to ensure that no copyrighted material is included. The specification is then implemented by a team with no connection to the original examiners.”
I have read nowhere near as much code (or anything) as what Claude has to read to get to where it is.
And I can write an optimizing compiler that isn't slower than GCC -O0
(prompt: what does a clean room implementation mean?)
From ChatGPT without login BTW!
> A clean room implementation is a way of building something (usually software) without copying or being influenced by the original implementation, so you avoid copyright or IP issues.
> The core idea is separation.
> Here’s how it usually works:
> The basic setup
> Two teams (or two roles):
> Specification team (the “dirty room”)
> Looks at the original product, code, or behavior
> Documents what it does, not how it does it
> Produces specs, interfaces, test cases, and behavior descriptions
> Implementation team (the “clean room”)
> Never sees the original code
> Only reads the specs
> Writes a brand-new implementation from scratch
> Because the clean team never touches the original code, their work is considered independently created, even if the behavior matches.
> Why people do this
> Reverse-engineering legally
> Avoid copyright infringement
> Reimplement proprietary systems
> Create open-source replacements
> Build compatible software (file formats, APIs, protocols)
I really am starting to think we have achieved AGI. > Average (G)Human Intelligence
LMAO
If you try to reimplement something in a clean room, its a step by step process, using your own accumulated knowledge as the basis. That knowledge that you hold in your brain, all too often is code that may have copyrights on it, from the companies you worked on.
Is it any different for a LLM?
The fact that the LLM is trained on more data, does not change that when you work for a company, leave it, take that accumulated knowledge to a different company, you are by definition taking that knowledge (that may be copyrighted) and implementing it somewhere else. It only a issue if you copy the code directly, or do the implementation as a 1:1 copy. LLMs do not make 1:1 copies of the original.
At what point is trained on copyrighted data, any different then a human trained on copyrighted data, that get reimplemented in a transformative way. The big difference is that the LLM can hold more data over more fields, vs a human, true... But if we look at specializations, this can come back to the same, no?
They weren't trillion dollar AI companies to bankroll the defense sure. But thinking about clean room and using copyrighted stuff is not even an argument that's just nonsense to try to prove something when no one asked.
All said and done, that its even possible is remarkable. Maybe these all go into training the next Opus or Sonnet and we start getting models that can create efficient compilers from scratch. That would be something!
There's been more than enough drive-by comments from new accounts/green names even in this HN submission alone.
GCC and Clang are worth much much more because they are battle-tested compilers that we understand and know work, even in a multitude of corner cases, over decades.
In future there's going to be lots and lots of basically worthless code, generated and regenerated over and over again. What will distinguish code that provides value? It's going to be code - however it was created, could be AI or human - that has actually been used and maintained in production for a long time, with a community or company behind it, bugs being triaged and fixed and so on.
If you had the knowledge that a transformer could pull this off in 2022. Even with all its flawed code. You would be floored.
Keep in mind that just a few years ago, the state of the art in what these LLMs could do was questions of this nature:
Suppose g(x) = f−1 (x), g(0) = 5, g(4) = 7, g(3) = 2, g(7) = 9, g(9) = 6 what is f(f(f(6)))?
The above is from the "sparks of AGI paper" on GPT-4, where they were floored that it could coherently reason through the 3 steps of inverting things (6 -> 9 -> 7 -> 4) while GPT 3.5 was still spitting out a nonsense argument of this form:
f(f(f(6))) = f(f(g(9))) = f(f(6)) = f(g(7)) = f(9).
This is from March 2023 and it was genuinely very surprising at the time that these pattern matching machines trained on next token prediction could do this. Something like a LSTM can't do anything like this at all btw, no where close.
To me its very surprising that the C compiler works. It takes a ton of effort to build such a thing. I can imagine the flaws actually do get better over the next year as we push the goalposts out.
- All prompts used
- The structure of the agent team (which agents / which roles)
- Any other material that went into the process
This would be a good source for learning, even though I'm not ready to spend 20k$ just for replicating the experiment.
What I am impressed by is that the task it completed had many steps and the agent didn't get lost or caught in a loop in the many sessions and time it spent doing it.
First 10 commits, "git log --all --pretty=format:%s --reverse | head",
Initial commit: empty repo structure
Lock: initial compiler scaffold task
Initial compiler scaffold: full pipeline for x86-64, AArch64, RISC-V
Lock: implement array subscript and lvalue assignments
Implement array subscript, lvalue assignments, and short-circuit evaluation
Add idea: type-aware codegen for correct sized operations
Lock: type-aware codegen for correct sized operations
Implement type-aware codegen for correct sized operations
Lock: implement global variable support
Implement global variable support across all three backendsI'll still work on it, of course. It just won't be so surprising.
It's very telling how all these examples are all "look, we made it recreate a shitter version of a thing that already exists in the training set".
https://github.com/jyn514/saltwater
> https://github.com/jyn514/saltwater
This is just a frontend. It uses Cranelift as the backend. It's missing some fairly basic language features like bitfields and variadic functions. And if I'm reading the documentation right, it requires all the source code to be in a single file...
> https://github.com/ClementTsang/rustcc
This will compile basically no real-world code. The only supported data type is "int".
> https://github.com/maekawatoshiki/rucc
This is just a frontend. It uses LLVM as the backend.
I completely agree that "reweite this existing codebase into a new language" could be a very powerful tool. But the article is making much bolder claims. And the result was more limited in capability, so you can't even really claim they've achieved the rewrite skill yet.
Without enough examples to copy from (despite CPU manuals being available in the training set) the approach failed. I wonder how well it'll do when you throw it a new/imaginary instruction set/CPU architecture; I bet it'll fail in similar ways.
And it's a bit of a nasty optimization problem, because the result is all or nothing. Implementing enough optimizations to get from 60kB to 33kB is useless, all the rewards come from getting to 32kB.
If the model were retrained without any of the existing compilers/toolchains in its training set, and it could still do something like this, that would be very compelling to me.
> [...] The fix was to use GCC as an online known-good compiler oracle to compare against. I wrote a new test harness that randomly compiled most of the kernel using GCC, and only the remaining files with Claude's C Compiler. If the kernel worked, then the problem wasn’t in Claude’s subset of the files. If it broke, then it could further refine by re-compiling some of these files with GCC. This let each agent work in parallel
This is a remarkably creative solution! Nicely done.
1) obvious green field project 2) well defined spec which will definitely be in the training data 3) an end result which lands you 90% from the finish
Now comes the hard part, the last 10%. Still not impressed here. Since fixing issues in the end was impossible without introducing bugs I have doubts about quality
I'm glad they do call it out in the end. That's fair
its funny bacause by (most) definitions, it is not an artifact:
> a usually simple object (such as a tool or ornament) showing human workmanship or modification as distinguished from a natural object
Imho some commenters focus way too much on the (many, and honestly also shared by the blog post too) cons, that they forget to be genuinely impressed by the steps forward.
Well there goes my weekend project plans
But when an AI does it, now it counts? Opus is trained on the source code of Clang, GCC, TCC, etc. So this is absolutely not "clean-room".
If you don't care about code quality, maintainability, readability, conformance to the specification, and performance of the compiler and of the compiled code, please, give me your $20,000, I'll give you your C compiler written from scratch :)
i don't know if you could. Let's say you get a check for $20k, how long will it take you to make an equivalent performing and compliant compiler? Are you going to put your life on pause until it's done for $20k? Who's going to pay your bills when the $20k is gone after 3 months?
I am not using teams though and there is quite a bit of knowledge needed to direct it (even with the test suite).
IMO a simpler novel product that humans enjoy is 10x more impressive than rehashing a solved problem, regardless of difficulty.
How much would it cost to pay someone to make a C compiler in rust? A lot more than $20k
* massive meaning "total context needed" >> model context window
They posted this video, looks like they used `qemu-system-riscv64` to test.
This is not entirely ridiculous.
Maybe read the article before being so dismissive.
If you trained on a neutral representation like an AST or IR, then the source language shouldn't matter. *
* I'm not familiar with how Anthropic builds their models, but training this way should nullify PL differences.
This has been my experience of vibe coding too. Good for getting started, but you quickly reach the point where fixing one thing breaks another and you have to finish the project yourself.
This is almost like asking me to invent a path finding algorithm when I've been thought Dijkstra's and A*.
A pertinent quote from the article (which is a really nice read, I'd recommend reading it fully at least once):
> Previous Opus 4 models were barely capable of producing a functional compiler. Opus 4.5 was the first to cross a threshold that allowed it to produce a functional compiler which could pass large test suites, but it was still incapable of compiling any real large projects. My goal with Opus 4.6 was to again test the limits.
The part I find concerning is that I wouldn't be in the place I am today without spending a fair amount of time in that monotony and really delving in to understand it and slowly push outside it's boundary. If I was starting programming today I can confidently say I would've given up.
"This AI can do 99.99%* of all human endeavours, but without that last 0.01% we'd still be in the trees", doesn't stop that 99.99% getting made redundant by the AI.
* vary as desired for your preference of argument, regarding how competent the AI actually is vs. how few people really show "true intelligence". Personally I think there's a big gap between them: paradigm-shifting inventiveness is necessarily rare, and AI can't fill in all the gaps under it yet. But I am very uncomfortable with how much AI can fill in for.
How many agents did they use with previous Opus? 3?
You've chosen an argument that works against you, because they actually could do that if they were trained to.
Give them the same post-training (recipes/steering) and the same datasets, and voila, they'll be capable of the same thing. What do you think is happening there? Did Anthropic inject magic ponies?
They only have to keep reiterating this because people are still pretending the training data doesn't contain all the information that it does.
> It's not like any LLM could 1for1 regurgitate millions of LoC from any training set... This is not how it works.
Maybe not any old LLM, but Claude gets really close.
(I'm not claiming this is what actually happened here, just pointing out that memorization is a lot more plausible/significant than you say)
[0] https://www.theregister.com/2026/01/09/boffins_probe_commerc...
Please fix.. :)
This is absolutely false and I wish the people doing these demonstrations were more honest.
It had access to GCC! Not only that, using GCC as an oracle was critical and had to be built in by hand.
Like the web browser project this shows how far you can get when you have a reference implementation, good benchmarks, and clear metrics. But that's not the real world for 99% of people, this is the easiest scenario for any ML setting.
That's because the "testing" was not done independently. So anything can be possibly be made to be misleading. Hence:
> Written by Nicholas Carlini, a researcher on our Safeguards team.
Worse than "-O0" takes skill...
So then, it produced something much worse than tcc (which is better than gcc -O0), an equivalent of which one man can produce in under two weeks. So even all those tokens and dollars did not equal one man's week of work.
Except the one man might explain such arbitrary and shitty code as this:
https://github.com/anthropics/claudes-c-compiler/blob/main/s...
why x9? who knows?!
Oh god the more i look at this code the happier I get. I can already feel the contracts coming to fix LLM slop like this when any company who takes this seriously needs it maintained and cannot...
Last year I tried using an LLM to make a joke language, I couldn't even compile the compiler the source code was so bad. Before Christmas, same joke language, a previous version of Claude gave me something that worked. I wouldn't call it "good", it was a joke language, but it did work.
So it sucks at writing a compiler? Yay. The gloriously indefatigable human mind wins another battle against the mediocre AI, but I can't help but notice how the battles keep getting closer to home.
This has been true for all of (known) human history. I’m gonna go ahead and make another bold prediction: tech will keep getting better.
The issue with this blog post is it’s mostly marketing.
Maybe I'm underestimating the simplicity of the C language, but that doesn't sound very plausible to me.
> Projects that compile and pass their test suites include PostgreSQL (all 237 regression tests), SQLite, QuickJS, zlib, Lua, libsodium, libpng, jq, libjpeg-turbo, mbedTLS, libuv, Redis, libffi, musl, TCC, and DOOM — all using the fully standalone assembler and linker with no external toolchain. Over 150 additional projects have also been built successfully, including FFmpeg (all 7331 FATE checkasm tests on x86-64 and AArch64), GNU coreutils, Busybox, CPython, QEMU, and LuaJIT.
Writing a C compiler is not that difficult, I agree. Writing a C compiler that can compile a significant amount of real software across multiple architectures? That's significantly more non-trivial.
First, the agents will attempt to fix issues on their own. Most easy problems will be fixed or worked-around in this manner. The hard problems will require a deeper causal model of how things work. For these, the agents will give up. But, the code-base is evolved to a point where no-one understands whats going on including the agents and its human handlers. Expect your phone to ring at that point, and prepare to ask for a ransom.
Honest question, do you think it’d be easier to fix or rewrite from scratch? With domains I’m intimately familiar with, I’ve come very close to simply throwing the LLM code out after using it to establish some key test cases.
What? Didn’t cursed lang do something similar like 6 or 7 months ago? These bombastic marketing tactics are getting tired.
That's for $20,000.
Microsoft, OpenAI, Anthropic, XAI, all solving the wrong problems, your problems not the collective ones.
Call it as you wish, but I am certainly not talking about coding values.
I know it's "easier to imagine an end to the world than an end to capitalism", but to quote another dreamer: "Imagine all the people sharing all the world".
I guess if it only created 1.000 lines it would be easy to see where those lines came from.
Generating a 99% compliant C compiler is not a textbook task in any university I've ever heard of. There's a vast difference between a toy compiler and one that can actually compile Linux and Doom.
From a bit of research now, there are only three other compilers that can compile an unmodified Linux kernel: GCC, Clang/LLVM and Intel's oneAPI. I can't find any other compiler implementation that came close.