Define data structures manually, ask AI to implement specific state changes. So JSON, C .h or other source files of func sigs and put prompts in there. Never tried the Agents.md monolithic definition file approach
Also I demand it stick to a limited set of processing patterns. Usually dynamic, recursive programming techniques and functions. They just make the most sense to my head and using one style I can spot check faster.
I also demand it avoid making up abstractions and stick to mathematical semantics. Unique namespaces are not relevant to software in the AI era. It's all about using unique vectors as keys to values.
Stick to one behavior or type/object definition per file.
Only allow dependencies that are designed as libraries to begin with. There is a ton of documentation to implement a Vulkan pipeline so just do that. Don't import an entire engine like libgodot.
And for my own agent framework I added observation of my local system telemetry via common Linux files and commands. This data feeds back in to be used to generate right-sized sched_ext schedules and leverage bpf for event driven responses.
Am currently experimenting with generation of small models of my own data. A single path of images for example not the entire Pictures directory. Each small model is spun akin to a Docker container.
LLMs are monolithic (massive) zip files of the entire web. No one really asking for that. And anyone who needs it already has access to the web itself
A lot of how I form my thoughts is driven by writing code, and seeing it on screen, running into its limitations.
Maybe it's the kind of work I'm doing, or maybe I just suck, but the code to me is a forcing mechanism into ironing out the details, and I don't get that when I'm writing a specification.
Outsourcing this to an LLM is similar to an airplane stall .. I just dip mentally. The stress goes away too, since I assume the LLM will get rid of the "problem" but I have no more incentives to think, create, solve anything.
Still blows my mind how different people approach some fields. I see people at work who are drooling about being able to have code made for them .. but I'm not in that group.
people seem to have a inability to predict second and third order effects
the first order effect is "I can sip a latte while the bot does my job for me"... well, great I suppose, while it lasts
but the second order effect is: unless you're in the top 10%, you will now lose your job, permanently
and the third order effect is the economy collapses as it is built on consumer spending
But it's also likely that these tools will produce mountains of unmaintainable code and people will get buried by the technical debt. It kind of strikes me as similar to the hubris of calling the Titanic "unsinkable." It's an untested claim with potentially disastrous consequences.
It's not just likely, but it's guaranteed to happen if you're not keeping an eye on it. So much so, that it's really reinforced my existing prejudice towards typed and compiled languages to reduce some of the checking you need to do.
Using an agent with a dynamic language feels very YOLO to me. I guess you can somewhat compensate with reams of tests though. (which begs the question, is the dynamic language still saving you time?)
I think we realistically have a few years of runway left though. Adoption is always slow outside of the far right of the bell curve.
How I see it is we've reverted back to a heavier spec type approach, however the turn around time is so fast with agents that it still can feel very iterative simply because the cost of bailing on an approach is so minimal. I treat the spec (and tests when applicable) as the real work now. I front load as much as I can into the spec, but I also iterate constantly. I often completely bail on a feature or the overall approach to a feature as I discover (with the agent) that I'm just not happy with the gotchas that come to light.
AI agents to me are a tool. An accelerator. I think there are people who've figured out a more vibey approach that works for them, but for now at least, my approach is to review and think about everything we're producing, which forms my thoughts as we go.
I think you have every right to doubt those telling us that they run 5 agents to generate a new SAAS-product while they are sipping latté in a bar. To work like that I believe you'll have to let go of really digging into the code, which in my experience is needed if want good quality.
Yet I think coding agents can be quite a useful help for some of the trivial, but time consuming chores.
For instance I find them quite good at writing tests. I still have to tweak the tests and make sure that they do as they say, but overall the process is faster IMO.
They are also quite good at brute-forcing some issue with a certain configuration in a dark corner of your android manifest. Just know that they WILL find a solution even if there is none, so keep them on a leash!
Today I used Claude for bringing a project I abandoned 5 years ago up to speed. It's still at work in progress, but the task seemed insurmountable (in my limited spare time) without AI, now it feels like I'm half-way there in 2-3 hours.
Not entirely unlike other code generation mechanisms, such as tools for generating HTML based on a graphical design. A human could edit that, but it may not have been the intent. The intent was that, if you want a change, go back to the GUI editor and regenerate the HTML.
So I think this question needs to be asked in the context of particular projects, not as an industry-wide yes or no answer. Does your particular project still need humans involved at the code level? Even just for review? If so, then you probably ought to retain human-oriented software design and coding techniques. If not, then, whatever. Doesn't matter. Aim for whatever efficiency metric you like.
Also we live in a capitalist society. The boss will soon ask: "Why the fuck am I paying you to sip a latte in a bar? While am machine does your work? Use all your time to make money for me, or you're fired."
AI just means more output will be expected of you, and they'll keep pushing you to work as hard as you can.
This past week, I spent three days modifying a web solution written by someone else using Codex - without looking at the code as someone who hasn’t done front in development in a decade - I verified the functionality.
More relevantly but related, I spent a couple of hours thinking through an architecture - cloud + an Amazon managed service + infrastructure as code + actual coding, diagramming it, labeling it , and thinking about the breakdown and phases to get it done. I put all of the requirements - that I would have done anyway - into a markdown file and told Claude and Codex to mark off items as I tested each item and summarize what it did.
Looking at the amount of work, between modifying the web front end and the new work, it would have taken two weeks with another developer helping me before AI based coding. It took me three or four days by myself.
The real kicker though is while it worked as expected for a couple of hundred documents, it fell completely to its knees when I threw 20x documents into the system. Before LLMs, this would have made me look completely incompetent telling the customer I now wasted two weeks worth of time and 2 other resources.
Now, I just went back to the literal drawing board, rearchitected it, did all of the things that the managed services abstracted away with a few tweaks, created a new mark down file and was done in a day. That rework would have taken me a week by itself. I knew the theory behind what the managed service was doing. But in practice I had never done it.
It’s been over a decade where I was responsable for a delivery that I could do by myself without delegating to other people or that was simple enough that I wouldn’t start with a design document for my own benefit. Now within the past year, I can take on larger projects by myself without the coordination/“mythical man Month” overhead.
I can also in a moment of exasperation say to Codex “what you did was over complicated stupid mess, rethink your implementation from first principles” without getting reported to HR.
There is also a lot of nice to have gold plating that I will do now knowing that it will be a lot faster
Sometimes the AI does weird stuff too. I wrote a texture projection for a nonstandard geometric primitive, the projection used some math that was valid only for local regions… long story. Claude kept on wanting to rewrite the function to what it thought was correct (it was not) even when I directed to non related tasks. Super annoying. I ended up wrapping the function in comments telling it to f#=% off before it would leave it alone.
We vibe around a lot in our heads and that's great. But it's really refreshing, every so often, to be where the rubber meets the road.
With AI, the correct approach is to think more like a software architect.
Learning to plan things out in your head upfront without to figure things out while coding requires a mindset shift, but is important to work effectively with the new tools.
To some this comes naturally, for others it is very hard.
The same kind of planning you’re describing can and do happen sans LLM, usually on the sofa, or in front of a whiteboard. Or by reading some research materials. No good programmer rushes to coding without a clear objective.
But the map is not the territory. A lot of questions surface during coding. LLMs will guess and the result may be correct according to the plan, but technically poor, unreliable, or downright insecure.
I also use these things to just plan out an approach. You can use plan mode for yourself to get an idea of the steps required and then ask the agent to write it to a file. Pull up the file and then go do it yourself.
If I have to say, we're just waiting for the AI concern caucus to get tired of performing for each other and justifying each other's inaction in other facets of their lives.
By the time you do everything outlined here you’ve basically recreated waterfall and lost all speed advantage. Might as well write the code yourself and just use AI as first-pass peer review on the code you’ve written.
A lot of the things the writer points out also feel like safeguards against the pitfalls of older models.
I do agree with their 12th point. The smaller your task the easier to verify that the model hasn’t lost the plot. It’s better to go fast with smaller updates that can be validated, and the combination of those small updates gives you your final result. That is still agile without going full “specifications document” waterfall.
“Break things down” is something most of us do instinctively now but it’s something I see less experienced people fail at all the time.
One of the problems with writing detailed specs is it means you understand the problem, but often the problem is not understand - but you learn to understand it through coding and testing.
So where are we now?
Astronaut 2, Tim Bryce: Always has been...
I do allow it to write the tests (lots of typing there), but I break them manually to see how they fail. And I do think about what the tests should cover before asking LLM to tell me (it does come up with some great ideas, but it also doesn't cover all the aspects I find important).
Great tool, but it is very easy to be led astray if you are not careful.
https://github.com/glittercowboy/get-shit-done
You still need to know the hard parts: precisely what you want to build, all domain/business knowledge questions solved, but this tool automates the rest of the coding and documentation and testing.
It's going to be a wild future for software development...
https://xcancel.com/hamptonism/status/2019434933178306971
And all that after stealing everyone's output.
1. Keep things small and review everything AI written, or 2. Keep things bloated and let AI do whatever it wants within the designated interface.
Initially I drew this line for API service / UI components, but it later expanded to other domains. e.g. For my hobby rust project I try to keep "trait"s to be single responsible, never overlap, easy to understand etc etc. but I never look at AI generated "impl"s as long as it passes some sensible tests and conforming the traits.
I find rust generally easier to reason about, but can't stand writing it.
The compiler works well with LLMs plenty of good tooling and LSPs.
If I'm happy with the shape of the code and I usually write the function signatures/ Module APIs. And the compiler is happy with it compiling. Usually the errors if any are logical ones I should catch in reviews.
So I focus on function, compiler focuses on correctness and LLM just does the actual writing.
Tl;Dr I don't mind reading rust I hate writing it and the compiler meets me in the middle.
Writing rust scares me, but I can read it just fine. I've come up with super masochistic linting rules that claude isn't allowed to change and that has improved things quite a bit.
I wish there was a mature framework for frontend that can be configured to be as strict as rust.
Before I also had to code it and then make sure it had no issues.
Now I can skip the coding and then just have something spit out something which I can evaluate whether I believe is a good implementation of my solution or not.
Of course, you need the skill to know good from bad but for medium to senior devs, AI is incredibly useful to get rid of the mundane task of actually writing code, while focusing on problem solving with critical review of magically generated code.
The suggestions you make are all sensible but maybe a little bit generic and obvious. Asking ChatGPT to generate advice on effectively writing quality code with AI generates a lot of similar suggestions (albeit less well written).
If this was written with help of AI, I'd personally appreciate a small notice above the blog post. If not, I'd suggest to augment the post with practical examples or anecdotal experience. At the moment, the target group seems to be novice programmers rather than the typical HN reader.
i have written this text by myself except like 2 or 3 sentences which i iterated with an LLM to nail down flow and readability. I would interpret that as completely written by me.
> The suggestions you make are all sensible but maybe a little bit generic and obvious. Asking ChatGPT to generate advice on effectively writing quality code with AI generates a lot of similar suggestions (albeit less well written).
Before i wrote this text, i also asked Gemini Deep Research but for me the results where too technical and not structural or high level as i describe them here. Hence the blogpost to share what i have found works best.
> If not, I'd suggest to augment the post with practical examples or anecdotal experience. At the moment, the target group seems to be novice programmers rather than the typical HN reader.
I have pondered the idea and also wrote a few anecdotal experiences but i deleted them again because i think it is hard to nail the right balance down and it is also highly depended on the project, what renders examples a bit useless.
And i also kind of like the short and lean nature of it the last few days when i worked on the blogpost. I might will make a few more blogposts about that, that will expand a few points.
Thank you for your feedback!
I've always advocated for using a linter and consistent formatting. But now I'm not so sure. What's the point? If nobody is going to bother reading the code anymore I feel like linting does not matter. I think in 10 years a software application will be very obfuscated implementation code with thousands of very solidly documented test cases and, much like compiled code, how the underlying implementation code looks or is organized won't really matter
If your goal is for AI to write code that works, is maintainable and extensible, you have to include as many deterministic guardrails as possible.
Don't get me wrong, I do think AI coding is pretty dangerous for those without the right expertise to harness it with the right guardrails, and I'm really worried about what it will mean for open source and SWE hiring, but I do think refusing to use AI at this point is a bit like the assembly programmer saying they'll never learn C.
This is the opinion of someone who has not tried to use Claude Code, in a brand new project with full permissions enabled, and with a model from the last 3 months.
There’s a lot of engineers who will refuse to wake up to the revolution happening in front of them.
I get it. The denialism is a deeply human response.
Even If I like this tech, I still dont want to support the companies who make it. Yet to pay a cent to these companies, still using the credits given to me by my employer.
On the flip side, anyone who believes you can create quality products with these tools without actually working hard is also deluded. My productivity is insane, what I can create in a long coding session is incredible, but I am working hard the whole time, reviewing outputs, devising GOOD integration/e2e tests to actually test the system, manually testing the whole time, keeping my eyes open for stereotypically bad model behaviors like creating fallbacks, deleting code to fulfill some objective.
It's actually downright a pain in the ass and a very unpleasant experience working in this way. I remember the sheer flow state I used to get into when doing deep programming where you are so immersed in managing the states and modeling the system. The current way of programming for me doesn't seem to provide that with the models. So there are aspects of how I have programmed my whole life that I dearly miss. Hours used to fly past me without me being the wiser due to flow. Now that's no longer the case most of the times.
Must be nice. Claude and Codex are still a waste of my time in complex legacy codebases.